Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
J Travel Med ; 31(3)2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38127641

RESUMEN

BACKGROUND: Malaria continues to pose a significant burden in endemic countries, many of which lack access to molecular surveillance. Insights from malaria cases in travellers returning to non-endemic areas can provide valuable data to inform endemic country programmes. To evaluate the potential for novel global insights into malaria, we examined epidemiological and molecular data from imported malaria cases to Australia. METHODS: We analysed malaria cases reported in Australia from 2012 to 2022 using National Notifiable Disease Surveillance System data. Molecular data on imported malaria cases were obtained from literature searches. RESULTS: Between 2012 and 2022, 3204 malaria cases were reported in Australia. Most cases (69%) were male and 44% occurred in young adults aged 20-39 years. Incidence rates initially declined between 2012 and 2015, then increased until 2019. During 2012-2019, the incidence in travellers ranged from 1.34 to 7.71 per 100 000 trips. Cases were primarily acquired in Sub-Saharan Africa (n = 1433; 45%), Oceania (n = 569; 18%) and Southern and Central Asia (n = 367; 12%). The most common countries of acquisition were Papua New Guinea (n = 474) and India (n = 277). Plasmodium falciparum accounted for 58% (1871/3204) of cases and was predominantly acquired in Sub-Saharan Africa, and Plasmodium vivax accounted for 32% (1016/3204), predominantly from Oceania and Asia. Molecular studies of imported malaria cases to Australia identified genetic mutations and deletions associated with drug resistance and false-negative rapid diagnostic test results, and led to the establishment of reference genomes for P. vivax and Plasmodium malariae. CONCLUSIONS: Our analysis highlights the continuing burden of imported malaria into Australia. Molecular studies have offered valuable insights into drug resistance and diagnostic limitations, and established reference genomes. Integrating molecular data into national surveillance systems could provide important infectious disease intelligence to optimize treatment guidelines for returning travellers and support endemic country surveillance programmes.


Asunto(s)
Malaria Vivax , Malaria , Adulto Joven , Masculino , Humanos , Femenino , Viaje , Malaria/diagnóstico , Malaria/tratamiento farmacológico , Malaria/epidemiología , Plasmodium falciparum , Australia/epidemiología
2.
Trends Parasitol ; 40(2): 147-163, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38129280

RESUMEN

Over recent years, progress in molecular markers for genotyping malaria parasites has enabled informative studies of epidemiology and transmission dynamics. Results have highlighted the value of these tools for surveillance to support malaria control and elimination strategies. There are many different types and panels of markers available for malaria parasite genotyping, and for end users, the nuances of these markers with respect to 'use case', resolution, and accuracy, are not well defined. This review clarifies issues surrounding different molecular markers and their application to malaria control and elimination. We describe available marker panels, use cases, implications for different transmission settings, limitations, access, cost, and data accuracy. The information provided can be used as a guide for molecular epidemiology and surveillance of malaria.


Asunto(s)
Malaria Falciparum , Malaria , Humanos , Malaria/epidemiología , Epidemiología Molecular , Biomarcadores , Malaria Falciparum/parasitología
3.
Sci Rep ; 13(1): 19779, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37957271

RESUMEN

Colombia aims to eliminate malaria by 2030 but remains one of the highest burden countries in the Americas. Plasmodium vivax contributes half of all malaria cases, with its control challenged by relapsing parasitaemia, drug resistance and cross-border spread. Using 64 Colombian P. vivax genomes collected between 2013 and 2017, we explored diversity and selection in two major foci of transmission: Chocó and Córdoba. Open-access data from other countries were used for comparative assessment of drug resistance candidates and to assess cross-border spread. Across Colombia, polyclonal infections were infrequent (12%), and infection connectivity was relatively high (median IBD = 5%), consistent with low endemicity. Chocó exhibited a higher frequency of polyclonal infections (23%) than Córdoba (7%), although the difference was not significant (P = 0.300). Most Colombian infections carried double pvdhfr (95%) and single pvdhps (71%) mutants, but other drug resistance mutations were less prevalent (< 10%). There was no evidence of selection at the pvaat1 gene, whose P. falciparum orthologue has recently been implicated in chloroquine resistance. Global population comparisons identified other putative adaptations. Within the Americas, low-level connectivity was observed between Colombia and Peru, highlighting potential for cross-border spread. Our findings demonstrate the potential of molecular data to inform on infection spread and adaptation.


Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria Vivax , Humanos , Plasmodium vivax/genética , Antimaláricos/farmacología , Colombia/epidemiología , Malaria Vivax/epidemiología , Malaria Vivax/tratamiento farmacológico , Proteínas Protozoarias/genética , Resistencia a Medicamentos/genética , Genómica
4.
Sci Rep ; 13(1): 20788, 2023 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-38012191

RESUMEN

Ethiopia has the greatest burden of Plasmodium vivax in Africa, but little is known about the epidemiological landscape of parasites across the country. We analysed the genomic diversity of 137 P. vivax isolates collected nine Ethiopian districts from 2012 to 2016. Signatures of selection were detected by cross-country comparisons with isolates from Thailand (n = 104) and Indonesia (n = 111), representing regions with low and high chloroquine resistance respectively. 26% (35/137) of Ethiopian infections were polyclonal, and 48.5% (17/35) of these comprised highly related clones (within-host identity-by-descent > 25%), indicating frequent co-transmission and superinfection. Parasite gene flow between districts could not be explained entirely by geographic distance, with economic and cultural factors hypothesised to have an impact on connectivity. Amplification of the duffy binding protein gene (pvdbp1) was prevalent across all districts (16-75%). Cross-population haplotype homozygosity revealed positive selection in a region proximal to the putative chloroquine resistance transporter gene (pvcrt-o). An S25P variant in amino acid transporter 1 (pvaat1), whose homologue has recently been implicated in P. falciparum chloroquine resistance evolution, was prevalent in Ethiopia (96%) but not Thailand or Indonesia (35-53%). The genomic architecture in Ethiopia highlights circulating variants of potential public health concern in an endemic setting with evidence of stable transmission.


Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria Vivax , Humanos , Plasmodium vivax , Malaria Vivax/parasitología , Etiopía/epidemiología , Cloroquina/farmacología , Cloroquina/uso terapéutico , Malaria Falciparum/parasitología , Genómica , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Resistencia a Medicamentos/genética , Plasmodium falciparum/metabolismo
5.
Nat Rev Microbiol ; 21(10): 633, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37700050

Asunto(s)
Genómica , Malaria , Humanos
6.
Malar J ; 22(1): 209, 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37443070

RESUMEN

BACKGROUND: The global battle against malaria is facing formidable challenges, particularly in controlling Plasmodium vivax and Plasmodium ovale, whose cases have not been reduced as effectively as Plasmodium falciparum because of their relapse. This study investigates the current situation and underlying factors contributing to relapse or recrudescence of imported cases of P. vivax and P. ovale, and seeks to provide a reference for reducing relapse or recrudescence in malaria-free areas and offers a scientific basis for designing strategies to prevent imported re-transmission. METHODS: This study analysed imported P. vivax and P. ovale in Anhui, Zhejiang, Henan, Hubei, and Guangxi provinces during 2014-2021 by retrospective analysis. A case-control study was conducted on patients who experienced relapse or recrudescence. RESULTS: From 2014 to 2021, 306 cases of P.vivax and 896 cases of P.ovale were included in the study, while 75 cases had relapse or recrudescence, including 49 cases of P. ovale (65.33%) and 26 cases of P. vivax (34.67%). Within less than 5 weeks after returning to the country, 122 cases of P. vivax (39.87%, 122/306) and 265 cases of P. ovale (29.58%, 265/896) occurred. Within less than 53 weeks, the ratio of P. vivax was 94.77% (290/306), and that of P. ovale was 89.96% (806/896). Among the cases experiencing relapse or recrudescence, only 1 case of P. vivax (1/26 3.85%) and 3 cases of P. ovale (3/49 6.12%) occurred within less than 5 weeks after the first onset, whereas 21 cases of P. vivax (21/26 80.77%) and 42 cases of P. ovale (42/49 85.71%) occurred within less than 53 weeks after the first onset. The difference in relapse or recrudescence due to different drugs and medication regimens and medical activities at various levels of medical institutions was statistically significant. CONCLUSION: In areas where malaria has been eliminated, routine health screening in a scientific time frame for people returning from at-risk areas can effectively improve the efficiency of preventing re-transmission, thereby reducing prevention costs and disease burden. Preventing patients from self-treating and strengthening medication regulations in health facilities are key measures to reduce relapse or recrudescence.


Asunto(s)
Malaria Vivax , Malaria , Plasmodium ovale , Humanos , Plasmodium vivax , Estudios de Casos y Controles , Estudios Retrospectivos , China/epidemiología , Malaria/prevención & control , Malaria Vivax/epidemiología , Malaria Vivax/tratamiento farmacológico , Recurrencia , Enfermedad Crónica
7.
Front Public Health ; 11: 1203095, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37448654

RESUMEN

Background: This study aimed at exploring the epidemiological pattern of imported malaria in China before malaria elimination in 2021, to provide evidence-based data for preventing malaria re-establishment in China. Methods: Nine-year surveillance data on imported malaria in four provincial-level administrative divisions (PLADs) (Anhui, Chongqing, Guangxi, and Zhejiang) between 2011 and 2019 were thoroughly collected and analyzed. Results: A quite stable trend in imported malaria cases between 2011 and 2019 was observed. In total, 6,064 imported patients were included. Plasmodium falciparum was the most frequently reported species (4,575, 75.6%). Cases of malaria were most frequently imported from Western Africa (54.4%). We identified an increasing trend in P. ovale and a persistence of P. vivax infections among the cases of malaria imported from Western Africa. Most patients (97.5%) were 20-50 years old. Among imported malaria infections, the main purposes for traveling abroad were labor export (4,914/6,064, 81.0%) and business trips (649, 10.7%). Most patients (2,008/6,064, 33.1%) first visited county-level medical institutions when they sought medical help in China. More patients were diagnosed within 3 days after visiting Centers for Disease Control and Prevention (CDCs) or entry-exit quarantine facilities (EQFs) (1,147/1609, 71.3%) than after visiting medical institutions (2,182/3993, 54.6%). Conclusion: Imported malaria still poses a threat to the malaria-free status of China. County-level institutions are the primary targets in China to improve the sensitivity of the surveillance system and prevent the re-establishment of malaria. Health education should focus on exported labors, especially to Western and Central Africa. Increasing trend in P. ovale and persistence of P. vivax infections indicated their underestimations in Western Africa. Efficient diagnostic tools and sensitive monitoring systems are required to identify Plasmodium species in Africa.


Asunto(s)
Malaria , Plasmodium ovale , Humanos , Adulto Joven , Adulto , Persona de Mediana Edad , Plasmodium vivax , Incidencia , China/epidemiología , Malaria/epidemiología , Malaria/prevención & control
8.
Antimicrob Agents Chemother ; 67(7): e0161022, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37314336

RESUMEN

Increasing reports of resistance to a frontline malaria blood-stage treatment, chloroquine (CQ), raises concerns for the elimination of Plasmodium vivax. The absence of an effective molecular marker of CQ resistance in P. vivax greatly constrains surveillance of this emerging threat. A recent genetic cross between CQ sensitive (CQS) and CQ resistant (CQR) NIH-1993 strains of P. vivax linked a moderate CQR phenotype with two candidate markers in P. vivax CQ resistance transporter gene (pvcrt-o): MS334 and In9pvcrt. Longer TGAAGH motif lengths at MS334 were associated with CQ resistance, as were shorter motifs at the In9pvcrt locus. In this study, high-grade CQR clinical isolates of P. vivax from a low endemic setting in Malaysia were used to investigate the association between the MS334 and In9pvcrt variants and treatment efficacy. Among a total of 49 independent monoclonal P. vivax isolates assessed, high-quality MS334 and In9pvcrt sequences could be derived from 30 (61%) and 23 (47%), respectively. Five MS334 and six In9pvcrt alleles were observed, with allele frequencies ranging from 2 to 76% and 3 to 71%, respectively. None of the clinical isolates had the same variant as the NIH-1993 CQR strain, and none of the variants were associated with CQ treatment failure (all P > 0.05). Multi-locus genotypes (MLGs) at 9 neutral microsatellites revealed a predominant P. vivax strain (MLG6) accounting for 52% of Day 0 infections. The MLG6 strain comprised equal proportions of CQS and CQR infections. Our study reveals complexity in the genetic basis of CQ resistance in the Malaysian P. vivax pre-elimination setting and suggests that the proposed pvcrt-o MS334 and In9pvcrt markers are not reliable markers of CQ treatment efficacy in this setting. Further studies are needed in other endemic settings, applying hypothesis-free genome-wide approaches, and functional approaches to understand the biological impact of the TGAAGH repeats linked to CQ response in a cross are warranted to comprehend and track CQR P. vivax.


Asunto(s)
Antimaláricos , Malaria Vivax , Humanos , Cloroquina/farmacología , Cloroquina/uso terapéutico , Plasmodium vivax/genética , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Malasia , Resistencia a Medicamentos/genética , Malaria Vivax/epidemiología , Alelos , Proteínas Protozoarias/genética , Proteínas Protozoarias/uso terapéutico
9.
PeerJ ; 11: e15339, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37250706

RESUMEN

Here, we present the R package, minSNPs. This is a re-development of a previously described Java application named Minimum SNPs. MinSNPs assembles resolution-optimised sets of single nucleotide polymorphisms (SNPs) from sequence alignments such as genome-wide orthologous SNP matrices. MinSNPs can derive sets of SNPs optimised for discriminating any user-defined combination of sequences from all others. Alternatively, SNP sets may be optimised to determine all sequences from all other sequences, i.e., to maximise diversity. MinSNPs encompasses functions that facilitate rapid and flexible SNP mining, and clear and comprehensive presentation of the results. The minSNPs' running time scales in a linear fashion with input data volume and the numbers of SNPs and SNPs sets specified in the output. MinSNPs was tested using a previously reported orthologous SNP matrix of Staphylococcus aureus and an orthologous SNP matrix of 3,279 genomes with 164,335 SNPs assembled from four S. aureus short read genomic data sets. MinSNPs was shown to be effective for deriving discriminatory SNP sets for potential surveillance targets and in identifying SNP sets optimised to discriminate isolates from different clonal complexes. MinSNPs was also tested with a large Plasmodium vivax orthologous SNP matrix. A set of five SNPs was derived that reliably indicated the country of origin within three south-east Asian countries. In summary, we report the capacity to assemble comprehensive SNP matrices that effectively capture microbial genomic diversity, and to rapidly and flexibly mine these entities for optimised marker sets.


Asunto(s)
Polimorfismo de Nucleótido Simple , Staphylococcus aureus , Polimorfismo de Nucleótido Simple/genética , Staphylococcus aureus/genética , Alineación de Secuencia , Genoma Microbiano , Genómica
10.
Wellcome Open Res ; 8: 22, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36864926

RESUMEN

We describe the MalariaGEN Pf7 data resource, the seventh release of Plasmodium falciparum genome variation data from the MalariaGEN network.  It comprises over 20,000 samples from 82 partner studies in 33 countries, including several malaria endemic regions that were previously underrepresented.  For the first time we include dried blood spot samples that were sequenced after selective whole genome amplification, necessitating new methods to genotype copy number variations.  We identify a large number of newly emerging crt mutations in parts of Southeast Asia, and show examples of heterogeneities in patterns of drug resistance within Africa and within the Indian subcontinent.  We describe the profile of variations in the C-terminal of the csp gene and relate this to the sequence used in the RTS,S and R21 malaria vaccines.  Pf7 provides high-quality data on genotype calls for 6 million SNPs and short indels, analysis of large deletions that cause failure of rapid diagnostic tests, and systematic characterisation of six major drug resistance loci, all of which can be freely downloaded from the MalariaGEN website.

11.
medRxiv ; 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36993192

RESUMEN

Challenges in understanding the origin of recurrent Plasmodium vivax infections constrains the surveillance of antimalarial efficacy and transmission of this neglected parasite. Recurrent infections within an individual may arise from activation of dormant liver stages (relapse), blood-stage treatment failure (recrudescence) or new inoculations (reinfection). Molecular inference of familial relatedness (identity-by-descent or IBD) based on whole genome sequence data, together with analysis of the intervals between parasitaemic episodes ("time-to-event" analysis), can help resolve the probable origin of recurrences. Whole genome sequencing of predominantly low-density P. vivax infections is challenging, so an accurate and scalable genotyping method to determine the origins of recurrent parasitaemia would be of significant benefit. We have developed a P. vivax genome-wide informatics pipeline to select specific microhaplotype panels that can capture IBD within small, amplifiable segments of the genome. Using a global set of 615 P. vivax genomes, we derived a panel of 100 microhaplotypes, each comprising 3-10 high frequency SNPs within <200 bp sequence windows. This panel exhibits high diversity in regions of the Asia-Pacific, Latin America and the horn of Africa (median HE = 0.70-0.81) and it captured 89% (273/307) of the polyclonal infections detected with genome-wide datasets. Using data simulations, we demonstrate lower error in estimating pairwise IBD using microhaplotypes, relative to traditional biallelic SNP barcodes. Our panel exhibited high accuracy in predicting the country of origin (median Matthew's correlation coefficient >0.9 in 90% countries tested) and it also captured local infection outbreak and bottlenecking events. The informatics pipeline is available open-source and yields microhaplotypes that can be readily transferred to high-throughput amplicon sequencing assays for surveillance in malaria-endemic regions.

12.
Front Cell Infect Microbiol ; 12: 953187, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36034708

RESUMEN

Although the power of genetic surveillance tools has been acknowledged widely, there is an urgent need in malaria endemic countries for feasible and cost-effective tools to implement in national malaria control programs (NMCPs) that can generate evidence to guide malaria control and elimination strategies, especially in the case of Plasmodium vivax. Several genetic surveillance applications ('use cases') have been identified to align research, technology development, and public health efforts, requiring different types of molecular markers. Here we present a new highly-multiplexed deep sequencing assay (Pv AmpliSeq). The assay targets the 33-SNP vivaxGEN-geo panel for country-level classification, and a newly designed 42-SNP within-country barcode for analysis of parasite dynamics in Vietnam and 11 putative drug resistance genes in a highly multiplexed NGS protocol with easy workflow, applicable for many different genetic surveillance use cases. The Pv AmpliSeq assay was validated using: 1) isolates from travelers and migrants in Belgium, and 2) routine collections of the national malaria control program at sentinel sites in Vietnam. The assay targets 229 amplicons and achieved a high depth of coverage (mean 595.7 ± 481) and high accuracy (mean error-rate of 0.013 ± 0.007). P. vivax parasites could be characterized from dried blood spots with a minimum of 5 parasites/µL and 10% of minority-clones. The assay achieved good spatial specificity for between-country prediction of origin using the 33-SNP vivaxGEN-geo panel that targets rare alleles specific for certain countries and regions. A high resolution for within-country diversity in Vietnam was achieved using the designed 42-SNP within-country barcode that targets common alleles (median MAF 0.34, range 0.01-0.49. Many variants were detected in (putative) drug resistance genes, with different predominant haplotypes in the pvmdr1 and pvcrt genes in different provinces in Vietnam. The capacity of the assay for high resolution identity-by-descent (IBD) analysis was demonstrated and identified a high rate of shared ancestry within Gia Lai Province in the Central Highlands of Vietnam, as well as between the coastal province of Binh Thuan and Lam Dong. Our approach performed well in geographically differentiating isolates at multiple spatial scales, detecting variants in putative resistance genes, and can be easily adjusted to suit the needs in other settings in a country or region. We prioritize making this tool available to researchers and NMCPs in endemic countries to increase ownership and ensure data usage for decision-making and malaria policy.


Asunto(s)
Antimaláricos , Malaria Vivax , Malaria , Resistencia a Medicamentos , Humanos , Plasmodium vivax
13.
Wellcome Open Res ; 7: 136, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35651694

RESUMEN

This report describes the MalariaGEN Pv4 dataset, a new release of curated genome variation data on 1,895 samples of Plasmodium vivax collected at 88 worldwide locations between 2001 and 2017. It includes 1,370 new samples contributed by MalariaGEN and VivaxGEN partner studies in addition to previously published samples from these and other sources. We provide genotype calls at over 4.5 million variable positions including over 3 million single nucleotide polymorphisms (SNPs), as well as short indels and tandem duplications. This enlarged dataset highlights major compartments of parasite population structure, with clear differentiation between Africa, Latin America, Oceania, Western Asia and different parts of Southeast Asia. Each sample has been classified for drug resistance to sulfadoxine, pyrimethamine and mefloquine based on known markers at the dhfr, dhps and mdr1 loci. The prevalence of all of these resistance markers was much higher in Southeast Asia and Oceania than elsewhere. This open resource of analysis-ready genome variation data from the MalariaGEN and VivaxGEN networks is driven by our collective goal to advance research into the complex biology of P. vivax and to accelerate genomic surveillance for malaria control and elimination.

14.
PLoS Negl Trop Dis ; 16(6): e0010492, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35737709

RESUMEN

Plasmodium vivax is the most widespread cause of human malaria. Recent reports of drug resistant vivax malaria and the challenge of eradicating the dormant liver forms increase the importance of vaccine development against this relapsing disease. P. vivax reticulocyte binding protein 1a (PvRBP1a) is a potential vaccine candidate, which is involved in red cell tropism, a crucial step in the merozoite invasion of host reticulocytes. As part of the initial evaluation of the PvRBP1a vaccine candidate, we investigated its genetic diversity and antigenicity using geographically diverse clinical isolates. We analysed pvrbp1a genetic polymorphisms using 202 vivax clinical isolates from six countries. Pvrbp1a was separated into six regions based on specific domain features, sequence conserved/polymorphic regions, and the reticulocyte binding like (RBL) domains. In the fragmented gene sequence analysis, PvRBP1a region II (RII) and RIII (head and tail structure homolog, 152-625 aa.) showed extensive polymorphism caused by random point mutations. The haplotype network of these polymorphic regions was classified into three clusters that converged to independent populations. Antigenicity screening was performed using recombinant proteins PvRBP1a-N (157-560 aa.) and PvRBP1a-C (606-962 aa.), which contained head and tail structure region and sequence conserved region, respectively. Sensitivity against PvRBP1a-N (46.7%) was higher than PvRBP1a-C (17.8%). PvRBP1a-N was reported as a reticulocyte binding domain and this study identified a linear epitope with moderate antigenicity, thus an attractive domain for merozoite invasion-blocking vaccine development. However, our study highlights that a global PvRBP1a-based vaccine design needs to overcome several difficulties due to three distinct genotypes and low antigenicity levels.


Asunto(s)
Malaria Vivax , Plasmodium vivax , Animales , Antígenos de Protozoos , Variación Genética , Humanos , Merozoítos , Polimorfismo Genético , Proteínas Protozoarias/metabolismo , Reticulocitos
15.
Artículo en Inglés | MEDLINE | ID: mdl-34193398

RESUMEN

Drug resistant Plasmodium parasites are a major threat to malaria control and elimination. After reports of high levels of multidrug resistant P. falciparum and P. vivax in Indonesia, in 2005, the national first-line treatment policy for uncomplicated malaria was changed in March 2006, to dihydroartemisinin-piperaquine against all species. This study assessed the temporal trends in ex vivo drug susceptibility to chloroquine (CQ) and piperaquine (PIP) for both P. falciparum and P. vivax clinical isolates collected between 2004 and 2018, by using schizont maturation assays, and genotyped a subset of isolates for known and putative molecular markers of CQ and PIP resistance by using Sanger and next generation whole genome sequencing. The median CQ IC50 values varied significantly between years in both Plasmodium species, but there was no significant trend over time. In contrast, there was a significant trend for increasing PIP IC50s in both Plasmodium species from 2010 onwards. Whereas the South American CQ resistant 7G8 pfcrt SVMNT isoform has been fixed since 2005 in the study area, the pfmdr1 86Y allele frequencies decreased and became fixed at the wild-type allele in 2015. In P. vivax isolates, putative markers of CQ resistance (no pvcrt-o AAG (K10) insertion and pvmdr1 Y967F and F1076L) were fixed at the mutant alleles since 2005. None of the putative PIP resistance markers were detected in P. falciparum. The ex vivo drug susceptibility and molecular analysis of CQ and PIP efficacy for P. falciparum and P. vivax after 12 years of intense drug pressure with DHP suggests that whilst the degree of CQ resistance appears to have been sustained, there has been a slight decline in PIP susceptibility, although this does not appear to have reached clinically significant levels. The observed decreasing trend in ex vivo PIP susceptibility highlights the importance of ongoing surveillance.


Asunto(s)
Antimaláricos , Artemisininas , Malaria Falciparum , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Artemisininas/farmacología , Artemisininas/uso terapéutico , Cloroquina/farmacología , Cloroquina/uso terapéutico , Resistencia a Medicamentos/genética , Humanos , Indonesia/epidemiología , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/epidemiología , Plasmodium falciparum/genética , Plasmodium vivax/genética , Proteínas Protozoarias/genética , Quinolinas
16.
Wellcome Open Res ; 6: 42, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33824913

RESUMEN

MalariaGEN is a data-sharing network that enables groups around the world to work together on the genomic epidemiology of malaria. Here we describe a new release of curated genome variation data on 7,000 Plasmodium falciparum samples from MalariaGEN partner studies in 28 malaria-endemic countries. High-quality genotype calls on 3 million single nucleotide polymorphisms (SNPs) and short indels were produced using a standardised analysis pipeline. Copy number variants associated with drug resistance and structural variants that cause failure of rapid diagnostic tests were also analysed.  Almost all samples showed genetic evidence of resistance to at least one antimalarial drug, and some samples from Southeast Asia carried markers of resistance to six commonly-used drugs. Genes expressed during the mosquito stage of the parasite life-cycle are prominent among loci that show strong geographic differentiation. By continuing to enlarge this open data resource we aim to facilitate research into the evolutionary processes affecting malaria control and to accelerate development of the surveillance toolkit required for malaria elimination.

17.
PLoS Med ; 18(4): e1003560, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33891580

RESUMEN

Sarah Auburn and co-authors discuss the unique biology and epidemiology of P. vivax and current evidence on conventional and new approaches to surveillance.


Asunto(s)
Monitoreo Epidemiológico , Malaria Vivax/epidemiología , Plasmodium vivax/fisiología , Vigilancia de la Población , Humanos
18.
PLoS Med ; 18(4): e1003576, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33891581

RESUMEN

BACKGROUND: Glucose-6-phosphate dehydrogenase (G6PD) activity is dependent upon G6PD genotype and age of the red blood cell (RBC) population, with younger RBCs having higher activity. Peripheral parasitemia with Plasmodium spp. induces hemolysis, replacing older RBCs with younger cells with higher G6PD activity. This study aimed to assess whether G6PD activity varies between individuals with and without malaria or a history of malaria. METHODS AND FINDINGS: Individuals living in the Chittagong Hill Tracts of Bangladesh were enrolled into 3 complementary studies: (i) a prospective, single-arm clinical efficacy trial of patients (n = 175) with uncomplicated malaria done between 2014 and 2015, (ii) a cross-sectional survey done between 2015 and 2016 (n = 999), and (iii) a matched case-control study of aparasitemic individuals with and without a history of malaria done in 2020 (n = 506). G6PD activity was compared between individuals with and without malaria diagnosed by microscopy, rapid diagnostic test (RDT), or polymerase chain reaction (PCR), and in aparasitemic participants with and without a history of malaria. In the cross-sectional survey and clinical trial, 15.5% (182/1,174) of participants had peripheral parasitemia detected by microscopy or RDT, 3.1% (36/1,174) were positive by PCR only, and 81.4% (956/1,174) were aparasitemic. Aparasitemic individuals had significantly lower G6PD activity (median 6.9 U/g Hb, IQR 5.2-8.6) than those with peripheral parasitemia detected by microscopy or RDT (7.9 U/g Hb, IQR 6.6-9.8, p < 0.001), but G6PD activity similar to those with parasitemia detected by PCR alone (submicroscopic parasitemia) (6.1 U/g Hb, IQR 4.8-8.6, p = 0.312). In total, 7.7% (14/182) of patients with malaria had G6PD activity < 70% compared to 25.0% (248/992) of participants with submicroscopic or no parasitemia (odds ratio [OR] 0.25, 95% CI 0.14-0.44, p < 0.001). In the case-control study, the median G6PD activity was 10.3 U/g Hb (IQR 8.8-12.2) in 253 patients with a history of malaria and 10.2 U/g Hb (IQR 8.7-11.8) in 253 individuals without a history of malaria (p = 0.323). The proportion of individuals with G6PD activity < 70% was 11.5% (29/253) in the cases and 15.4% (39/253) in the controls (OR 0.7, 95% CI 0.41-1.23, p = 0.192). Limitations of the study included the non-contemporaneous nature of the clinical trial and cross-sectional survey. CONCLUSIONS: Patients with acute malaria had significantly higher G6PD activity than individuals without malaria, and this could not be accounted for by a protective effect of G6PD deficiency. G6PD-deficient patients with malaria may have higher than expected G6PD enzyme activity and an attenuated risk of primaquine-induced hemolysis compared to the risk when not infected.


Asunto(s)
Deficiencia de Glucosafosfato Deshidrogenasa/epidemiología , Glucosafosfato Deshidrogenasa/metabolismo , Malaria/epidemiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Bangladesh/epidemiología , Estudios de Casos y Controles , Niño , Preescolar , Ensayos Clínicos como Asunto , Estudios Transversales , Femenino , Deficiencia de Glucosafosfato Deshidrogenasa/metabolismo , Humanos , Lactante , Recién Nacido , Malaria/parasitología , Masculino , Persona de Mediana Edad , Parasitemia/epidemiología , Parasitemia/parasitología , Adulto Joven
19.
Malar J ; 20(1): 15, 2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33407463

RESUMEN

BACKGROUND: Although autochthonous malaria cases are no longer reported in Anhui Province, China, imported malaria has become a major health concern. The proportion of reported malaria cases caused by Plasmodium ovale spp. increased to levels higher than expected during 2012 to 2019, and showed two peaks, 19.69% in 2015 and 19.35% in 2018. METHODS: A case-based retrospective study was performed using data collected from the China Information System for Disease Control and Prevention (CISDCP) and Information System for Parasitic Disease Control and Prevention (ISPDCP) from 2012 to 2019 to assess the trends and differences between Plasmodium ovale curtisi (P. o. curtisi) and Plasmodium ovale wallikeri (P. o. wallikeri). Epidemiological characteristics were analyzed using descriptive statistics. RESULTS: Plasmodium o. curtisi and P. o. wallikeri were found to simultaneously circulate in 14 African countries. Among 128 patients infected with P. ovale spp., the proportion of co-infection cases was 10.16%. Six cases of co-infection with P. ovale spp. and P. falciparum were noted, each presenting with two clinical attacks (the first attack was due to P. falciparum and the second was due to P. ovale spp.) at different intervals. Accurate identification of the infecting species was achieved among only 20.00% of cases of P. ovale spp. infection. At the reporting units, 32.17% and 6.96% of cases of P. ovale spp. infection were misdiagnosed as P. vivax and P. falciparum infections, respectively. CONCLUSION: The present results indicate that the potential of P. ovale spp. to co-infect with other Plasmodium species has been previously underestimated, as is the incidence of P. ovale spp. in countries where malaria is endemic. P. o. curtisi may have a long latency period of > 3 years and potentially cause residual foci, thus posing challenges to the elimination of malaria in P. ovale spp.-endemic areas. Considering the low rate of species identification, more sensitive point-of-care detection methods need to be developed for P. ovale spp. and introduced in non-endemic areas.


Asunto(s)
Enfermedades Transmisibles Importadas/epidemiología , Malaria/epidemiología , Plasmodium ovale/fisiología , África/epidemiología , África/etnología , China/epidemiología , Enfermedades Transmisibles Importadas/parasitología , Incidencia , Malaria/parasitología , Estudios Retrospectivos
20.
PLoS Negl Trop Dis ; 14(12): e0008945, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33326439

RESUMEN

BACKGROUND: Plasmodium vivax has been recently discovered as a significant cause of malaria in Mauritania, although very rare elsewhere in West Africa. It has not been known if this is a recently introduced or locally remnant parasite population, nor whether the genetic structure reflects epidemic or endemic transmission. METHODOLOGY/PRINCIPAL FINDINGS: To investigate the P. vivax population genetic structure in Mauritania and compare with populations previously analysed elsewhere, multi-locus genotyping was undertaken on 100 clinical isolates, using a genome-wide panel of 38 single nucleotide polymorphisms (SNPs), plus seven SNPs in drug resistance genes. The Mauritanian P. vivax population is shown to be genetically diverse and divergent from populations elsewhere, indicated consistently by genetic distance matrix analysis, principal components analyses, and fixation indices. Only one isolate had a genotype clearly indicating recent importation, from a southeast Asian source. There was no linkage disequilibrium in the local parasite population, and only a small number of infections appeared to be closely genetically related, indicating that there is ongoing genetic recombination consistent with endemic transmission. The P. vivax diversity in a remote mining town was similar to that in the capital Nouakchott, with no indication of local substructure or of epidemic population structure. Drug resistance alleles were virtually absent in Mauritania, in contrast with P. vivax in other areas of the world. CONCLUSIONS/SIGNIFICANCE: The molecular epidemiology indicates that there is long-standing endemic transmission that will be very challenging to eliminate. The virtual absence of drug resistance alleles suggests that most infections have been untreated, and that this endemic infection has been more neglected in comparison to P. vivax elsewhere.


Asunto(s)
Resistencia a Medicamentos/genética , Variación Genética , Genética de Población , Malaria Vivax/parasitología , Plasmodium vivax/genética , Alelos , Genotipo , Técnicas de Genotipaje , Humanos , Desequilibrio de Ligamiento , Mauritania/epidemiología , Tipificación de Secuencias Multilocus , Plasmodium vivax/aislamiento & purificación , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...